Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 03 2023 10:45:46
%S 1,3,4,1,6,12,8,15,1,18,12,4,14,24,24,1,18,3,20,6,32,36,24,60,1,42,40,
%T 8,30,72,32,63,48,54,48,1,38,60,56,90,42,96,44,12,6,72,48,4,1,3,72,14,
%U 54,120,72,120,80,90,60,24,62,96,8,1,84,144,68,18,96,144,72,15,74,114,4,20,96,168,80,6,1,126,84
%N Sum of divisors of the largest unitary divisor of n that is an exponentially odd number.
%H Antti Karttunen, <a href="/A351569/b351569.txt">Table of n, a(n) for n = 1..20000</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>.
%F Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if e is odd and 1 otherwise.
%F a(n) = A000203(A350389(n)).
%F a(n) = A000203(n) / A351568(n).
%F Sum_{k=1..n} a(k) ~ c * n^2, where c = zeta(4)/2 = Pi^4/180 = 0.541161... . - _Amiram Eldar_, Nov 20 2022
%F Dirichlet g.f.: zeta(2*s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^s - 1/p^(2*s-2)). - _Amiram Eldar_, Sep 03 2023
%t f[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Feb 23 2022 *)
%o (PARI)
%o A350389(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(1==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
%o A351569(n) = sigma(A350389(n));
%o (Python)
%o from math import prod
%o from sympy import factorint
%o def A351569(n): return prod((p**(e+1)-1)//(p-1) if e % 2 else 1 for p, e in factorint(n).items()) # _Chai Wah Wu_, Feb 24 2022
%Y Cf. A000203, A013662, A028982 (positions of odd terms), A268335 (exponentially odd numbers), A350389, A351568, A351571.
%Y Coincides with A001615 on squarefree numbers, A005117.
%K nonn,mult
%O 1,2
%A _Antti Karttunen_, Feb 23 2022