%I #6 Feb 14 2022 04:01:54
%S 4,2,3,9,3,6,9,4,8,1,5,4,8,0,2,5,6,7,1,8,7,7,6,2,5,7,4,2,0,4,5,2,3,5,
%T 7,7,2,1,0,0,6,9,5,7,1,1,2,5,1,7,9,5,4,9,9,8,3,0,8,0,1,6,8,7,8,3,3,3,
%U 5,8,2,3,8,2,7,6,7,2,8,9,8,7,8,3,7,0,5,4,8
%N Decimal expansion of lim_{n->infinity} f(3, n)^(1/(3*n)), where f(m, n) is the number of primitive lattice triangulations of m X n rectangle.
%H S. Yu. Orevkov, <a href="https://arxiv.org/abs/2201.12827">Counting lattice triangulations: Fredholm equations in combinatorics</a>, arXiv:2201.12827 [math.CO], 2022. See Theorem 2, p. 2.
%e 4.2393694815480256718776257420452357721...
%Y Cf. A082640.
%Y Cf. A351480, A351481, A351483.
%Y Cf. A351484, A351485, A351486, A351487, A351488.
%K nonn,cons
%O 1,1
%A _Stefano Spezia_, Feb 12 2022