login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes congruent to 1 (mod 3) that divide some Fermat number.
3

%I #21 Mar 27 2022 22:53:58

%S 274177,319489,6700417,825753601,1214251009,6487031809,646730219521,

%T 6597069766657,25409026523137,31065037602817,46179488366593,

%U 151413703311361,231292694251438081,1529992420282859521,2170072644496392193,3603109844542291969

%N Primes congruent to 1 (mod 3) that divide some Fermat number.

%C Subsequence of A014752.

%D Allan Cunningham, Haupt-exponents of 2, The Quarterly Journal of Pure and Applied Mathematics, Vol. 37 (1906), pp. 122-145.

%H Wilfrid Keller, <a href="http://www.prothsearch.com/fermat.html">Prime factors k.2^n + 1 of Fermat numbers F_m</a>.

%F A002476 INTERSECT A023394.

%e a(1) = 503^2 + 27*28^2 = 274177 is a prime factor of 2^(2^6) + 1;

%e a(2) = 383^2 + 27*80^2 = 319489 is a prime factor of 2^(2^11) + 1;

%e a(3) = 887^2 + 27*468^2 = 6700417 is a prime factor of 2^(2^5) + 1;

%e a(4) = 27017^2 + 27*1884^2 = 825753601 is a prime factor of 2^(2^16) + 1;

%e a(5) = 2561^2 + 27*6688^2 = 1214251009 is a prime factor of 2^(2^15) + 1;

%o (PARI) isok(p) = if(p%6==1 && isprime(p), my(z=znorder(Mod(2, p))); z>>valuation(z, 2)==1, return(0));

%Y Cf. A002476, A014752, A023394, A204620, A229850, A229853.

%K nonn

%O 1,1

%A _Arkadiusz Wesolowski_, Feb 07 2022