login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the 10th powers of the square divisors of n.
3

%I #21 Aug 24 2024 13:47:36

%S 1,1,1,1048577,1,1,1,1048577,3486784402,1,1,1048577,1,1,1,

%T 1099512676353,1,3486784402,1,1048577,1,1,1,1048577,95367431640626,1,

%U 3486784402,1048577,1,1,1,1099512676353,1,1,1,3656161927895954,1,1,1,1048577,1,1,1,1048577,3486784402,1,1

%N Sum of the 10th powers of the square divisors of n.

%C Inverse Möbius transform of n^10 * c(n), where c(n) is the characteristic function of squares (A010052). - _Wesley Ivan Hurt_, Jun 21 2024

%H Seiichi Manyama, <a href="/A351316/b351316.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = Sum_{d^2|n} (d^2)^10.

%F Multiplicative with a(p) = (p^(20*(1+floor(e/2))) - 1)/(p^20 - 1). - _Amiram Eldar_, Feb 07 2022

%F G.f.: Sum_{k>0} k^20*x^(k^2)/(1-x^(k^2)). - _Seiichi Manyama_, Feb 12 2022

%F From _Amiram Eldar_, Sep 20 2023: (Start)

%F Dirichlet g.f.: zeta(s) * zeta(2*s-20).

%F Sum_{k=1..n} a(k) ~ (zeta(21/2)/21) * n^(21/2). (End)

%F a(n) = Sum_{d|n} d^10 * c(d), where c = A010052. - _Wesley Ivan Hurt_, Jun 21 2024

%e a(16) = 1099512676353; a(16) = Sum_{d^2|16} (d^2)^10 = (1^2)^10 + (2^2)^10 + (4^2)^10 = 1099512676353.

%t f[p_, e_] := (p^(20*(1 + Floor[e/2])) - 1)/(p^20 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Feb 07 2022 *)

%t Table[Total[Select[Divisors[n],IntegerQ[Sqrt[#]]&]^10],{n,50}] (* _Harvey P. Dale_, Aug 24 2024 *)

%o (PARI) my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, k^20*x^k^2/(1-x^k^2))) \\ _Seiichi Manyama_, Feb 12 2022

%Y Sum of the k-th powers of the square divisors of n for k=0..10: A046951 (k=0), A035316 (k=1), A351307 (k=2), A351308 (k=3), A351309 (k=4), A351310 (k=5), A351311 (k=6), A351313 (k=7), A351314 (k=8), A351315 (k=9), this sequence (k=10).

%Y Cf. A010052.

%K nonn,easy,mult

%O 1,4

%A _Wesley Ivan Hurt_, Feb 06 2022