Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 28 2024 07:39:02
%S 1,513,19684,262656,1953126,10097892,40353608,134479872,387440172,
%T 1001953638,2357947692,5170120704,10604499374,20701400904,38445332184,
%U 68853694464,118587876498,198756808236,322687697780,513000262656,794320419872,1209627165996,1801152661464,2647101800448
%N a(n) = n^9 * Product_{p|n, p prime} (1 + 1/p^9).
%C Sum of the 9th powers of the divisor complements of the squarefree divisors of n.
%H Sebastian Karlsson, <a href="/A351304/b351304.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = Sum_{d|n} d^9 * mu(n/d)^2.
%F a(n) = n^9 * Sum_{d|n} mu(d)^2 / d^9.
%F Multiplicative with a(p^e) = p^(9*e) + p^(9*e-9). - _Sebastian Karlsson_, Feb 08 2022
%F From _Vaclav Kotesovec_, Feb 12 2022: (Start)
%F Dirichlet g.f.: zeta(s)*zeta(s-9)/zeta(2*s).
%F Sum_{k=1..n} a(k) ~ n^10 * zeta(10) / (10 * zeta(20)) = 3273645375 * n^10 / (349222 * Pi^10).
%F Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^9/(p^18-1)) = 1.002004575331916689985388864168116922608947780516939765639888137700557... (End)
%t f[p_, e_] := p^(9*e) + p^(9*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 25] (* _Amiram Eldar_, Feb 08 2022 *)
%o (PARI) a(n)=sumdiv(n, d, moebius(n/d)^2*d^9);
%o (PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + X)/(1 - p^9*X))[n], ", ")) \\ _Vaclav Kotesovec_, Feb 12 2022
%o (Python)
%o from math import prod
%o from sympy import factorint
%o def A351304(n): return prod(p**(9*e)+p**(9*(e-1)) for p,e in factorint(n).items()) # _Chai Wah Wu_, Sep 28 2024
%Y Cf. A008683 (mu).
%Y Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), A001615 (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), this sequence (k=9), A351305 (k=10).
%K nonn,mult
%O 1,2
%A _Wesley Ivan Hurt_, Feb 06 2022