login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least k such that the k-th arithmetic derivative of A351255(n) is zero.
8

%I #13 Feb 12 2022 20:30:42

%S 1,2,2,3,4,5,2,3,3,4,5,6,5,6,2,5,4,3,4,3,3,4,5,4,4,7,12,6,7,4,4,4,4,4,

%T 4,4,5,8,8,6,5,12,5,5,5,8,10,6,6,6,7,6,7,7,8,12,8,12,2,3,6,3,3,4,4,5,

%U 4,4,4,8,5,5,6,12,6,3,3,7,3,3,10,3,4,5,5,4,4,6,4,4,4,6,5,5,6,5,9,5,6,10,7,7,7

%N Least k such that the k-th arithmetic derivative of A351255(n) is zero.

%C a(n) is the number of iterations of the map x -> A003415(x) needed to reach zero, when starting from x = A351255(n).

%H Antti Karttunen, <a href="/A351257/b351257.txt">Table of n, a(n) for n = 1..105368</a> (computed for all 19-smooth terms of A351255, and also for A276086(9699690) = 23)

%F a(n) = A099307(A351255(n)).

%F For all n, a(n) > A351256(n). [See A351258 for the differences].

%e From A351255(27) = 2625 it takes 12 iterations of map x -> A003415(x) to reach zero, as 2625 -> 2825 -> 1155 -> 886 -> 445 -> 94 -> 49 -> 14 -> 9 -> 6 -> 5 -> 1 -> 0, therefore a(27) = 12.

%o (PARI)

%o A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i,2]>=f[i,1],return(0), s += f[i, 2]/f[i, 1])); (n*s));

%o A099307(n) = { my(s=1); while(n>1, n = A003415checked(n); s++); if(n,s,0); };

%o A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };

%o for(n=0, 2^9, u=A276086(n); c = A099307(u); if(c>0,print1(c, ", ")));

%Y Cf. A003415, A099307, A276086, A351255, A351256, A351258, A351259, A351261.

%K nonn,look

%O 1,2

%A _Antti Karttunen_, Feb 11 2022