login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = sigma(n) * A276086(n), pointwise product of the sum of divisors function and the primorial base exp-function.
3

%I #11 Feb 17 2022 16:04:48

%S 2,9,24,63,108,60,80,225,390,810,1080,700,700,1800,3600,6975,8100,

%T 4875,5000,15750,24000,40500,54000,37500,38750,78750,150000,315000,

%U 337500,504,448,1323,2016,3402,6048,3185,2660,6300,11760,28350,26460,16800,15400,44100,81900,113400,151200,108500,99750,244125,378000

%N a(n) = sigma(n) * A276086(n), pointwise product of the sum of divisors function and the primorial base exp-function.

%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = A000203(n) * A276086(n).

%t Array[Block[{i = 1, m = 1, n = #, p}, While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; DivisorSigma[1, #]*m] &, 51] (* _Michael De Vlieger_, Feb 17 2022, after _Jean-François Alcover_ at A276086 *)

%o (PARI)

%o A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };

%o A351252(n) = (sigma(n) * A276086(n));

%Y Cf. A000203, A276086.

%Y Cf. also A324580, A341529, A351458.

%K nonn

%O 1,1

%A _Antti Karttunen_, Feb 17 2022