login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^6 * Sum_{p|n, p prime} 1/p^6.
11

%I #9 Feb 06 2022 02:15:42

%S 0,1,1,64,1,793,1,4096,729,15689,1,50752,1,117713,16354,262144,1,

%T 578097,1,1004096,118378,1771625,1,3248128,15625,4826873,531441,

%U 7533632,1,12437281,1,16777216,1772290,24137633,133274,36998208,1,47045945,4827538,64262144,1,93342313

%N a(n) = n^6 * Sum_{p|n, p prime} 1/p^6.

%H Seiichi Manyama, <a href="/A351246/b351246.txt">Table of n, a(n) for n = 1..10000</a>

%F a(A000040(n)) = 1.

%e a(6) = 793; a(6) = 6^6 * Sum_{p|6, p prime} 1/p^6 = 46656 * (1/2^6 + 1/3^6) = 793.

%Y Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), this sequence (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), A351262 (k=10).

%Y Cf. A000040.

%K nonn

%O 1,4

%A _Wesley Ivan Hurt_, Feb 05 2022