|
|
A351223
|
|
a(n) is the number of triangular arrays containing the first 3*(n - 1) positive integers arranged with number n on each side and having different set of the sets of the side integers.
|
|
1
|
|
|
1, 120, 7560, 369600, 15765750, 617512896, 22813670880, 807723671040, 27686621927250, 925166131890000, 30286238493551040, 974802747606105600, 30933063577681246800, 969808565876506272000, 30090926129273230320000, 925249170367839629537280, 28225069296255264089522250
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (3*(n - 1))!/(6*((n - 2)!)^3).
With F the generalized hypergeometric function: (Start)
O.g.f.: x^2*F([4/3, 5/3, 2], [1, 1], 27*x).
E.g.f.: x^2*F([4/3, 5/3, 2], [1, 1, 3], 27*x]/2. (End)
|
|
EXAMPLE
|
a(2) = 1:
1
/ \
2 - 3
with the set of the sets of the side integers S = {{1, 2}, {1, 3}, {2, 3}}.
|
|
MATHEMATICA
|
Table[(3(n-1))!/(6((n-2)!)^3), {n, 2, 18}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|