login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351183
a(n) = Sum_{k=0..n} k^(2*n) * Stirling1(n,k).
4
1, 1, 15, 539, 28980, 1295404, -177715720, -88870557952, -11213754156480, 11072302541223336, 8352732988619491824, -1800044600955923261688, -8483589341410812834791040, -2945489916041839476122254560
OFFSET
0,3
FORMULA
E.g.f.: Sum_{k>=0} log(1 + k^2*x)^k / k!.
PROG
(PARI) a(n) = sum(k=0, n, k^(2*n)*stirling(n, k, 1));
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, log(1+k^2*x)^k/k!)))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 04 2022
STATUS
approved