Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Feb 16 2022 11:12:49
%S 1,1,3,1,4,6,1,5,8,10,1,6,10,13,15,1,7,12,16,19,21,1,8,14,19,23,26,28,
%T 1,9,16,22,27,31,34,36,1,10,18,25,31,36,40,43,45,1,11,20,28,35,41,46,
%U 50,53,55,1,12,22,31,39,46,52,57,61,64,66,1,13,24,34,43,51,58,64,69,73,76,78
%N Triangle read by rows: T(n, k) = n*(k - 1) - k*(k - 3)/2 with 0 < k <= n.
%C Except for the number 2, it contains all the positive integers.
%F T(n, k) = 1 + Sum_{i=1..k-1} (n - i + 1).
%F From _R. J. Mathar_, Feb 07 2022: (Start)
%F G.f.: x*y*(1 - x + y*x^2 + y^2*x^3)/((1 - x)^2*(1 - y*x)^3).
%F T(n, k) = 1 + A141418(n+1, k-1) = 1 + A087401(n+1, k-1). (End)
%e Triangle begins:
%e 1;
%e 1, 3;
%e 1, 4, 6;
%e 1, 5, 8, 10;
%e 1, 6, 10, 13, 15;
%e 1, 7, 12, 16, 19, 21;
%e 1, 8, 14, 19, 23, 26, 28;
%e ...
%t Flatten[Table[n(k-1)-k(k-3)/2,{n,12},{k,n}]]
%Y Cf. A000012 (1st column), A000217 (leading diagonal), A005843 (3rd column), A006007 (sum of the first n rows), A006527 (row sums).
%Y Cf. A087401, A141418, A351154.
%K nonn,easy,tabl
%O 1,3
%A _Stefano Spezia_, Feb 02 2022