Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Feb 03 2022 10:43:01
%S 1,0,1,3,10,39,181,972,5797,37389,258202,1905681,15016465,125920872,
%T 1117950913,10452866439,102485649754,1050464300187,11231883627301,
%U 125055844922916,1447371528438565,17382103226123313,216221862096537994,2781342531957176085,36942930754308211969
%N G.f. A(x) satisfies: A(x) = 1 + x^2 * A(x/(1 - 3*x)) / (1 - 3*x).
%C Shifts 2 places left under 3rd-order binomial transform.
%F a(0) = 1, a(1) = 0; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 3^k * a(n-k-2).
%t nmax = 24; A[_] = 0; Do[A[x_] = 1 + x^2 A[x/(1 - 3 x)]/(1 - 3 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
%t a[0] = 1; a[1] = 0; a[n_] := a[n] = Sum[Binomial[n - 2, k] 3^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 24}]
%Y Cf. A000994, A004212, A351049, A351143, A351150, A351151, A351152.
%K nonn
%O 0,4
%A _Ilya Gutkovskiy_, Feb 02 2022