Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 May 09 2022 17:26:47
%S 1,3,6,6,6,12,12,12,12,12,12,24,24,38,53,53,53,53,53,53,53,53,53,53,
%T 53,53,53,53,53,83,83,83,83,83,118,118,118,118,118,118,118,160,160,
%U 160,160,160,160,160,160,160,160,160,160,160,160,216,216,216,216,216,216,216
%N Sum of the balanced numbers <= n.
%C A balanced number k is a number such that phi(k) | sigma(k).
%H Harvey P. Dale, <a href="/A351116/b351116.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = Sum_{k<=n, phi(k)|sigma(k)} k.
%F a(n) = Sum_{k=1..n} k * c(k), where c is the characteristic function of balanced numbers (A351114).
%e a(15) = 53; the sum of the balanced numbers <= 15 is 1+2+3+6+12+14+15 = 53.
%t f[n_] := n * Boole[Divisible[DivisorSigma[1, n], EulerPhi[n]]]; Accumulate @ Array[f, 100] (* _Amiram Eldar_, Feb 01 2022 *)
%t Accumulate[Table[If[Divisible[DivisorSigma[1,n],EulerPhi[n]],n,0],{n,70}]] (* _Harvey P. Dale_, May 09 2022 *)
%o (PARI) a(n) = sum(k=1, n, if (!(sigma(k) % eulerphi(k)), k)); \\ _Michel Marcus_, Feb 01 2022
%Y Cf. A000010 (phi), A000203 (sigma), A020492 (balanced numbers), A351114, A351115.
%K nonn
%O 1,2
%A _Wesley Ivan Hurt_, Jan 31 2022