login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A351049 G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - 3*x)) / (1 - 3*x). 7

%I #11 Feb 20 2022 11:04:08

%S 1,1,1,4,16,67,307,1585,9235,59548,415564,3094807,24452785,204611653,

%T 1810429597,16892405896,165592138372,1698918207403,18184602679435,

%U 202577753111653,2344503929765023,28146188358379120,349996346545057288,4501360727764475503

%N G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - 3*x)) / (1 - 3*x).

%C Shifts 2 places left under 3rd-order binomial transform.

%H Seiichi Manyama, <a href="/A351049/b351049.txt">Table of n, a(n) for n = 0..540</a>

%F a(0) = a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 3^k * a(n-k-2).

%t nmax = 23; A[_] = 0; Do[A[x_] = 1 + x + x^2 A[x/(1 - 3 x)]/(1 - 3 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

%t a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 3^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 23}]

%Y Cf. A004212, A007472, A007476, A351050.

%K nonn

%O 0,4

%A _Ilya Gutkovskiy_, Jan 30 2022

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 11 22:08 EDT 2024. Contains 375076 sequences. (Running on oeis4.)