login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=1..n} k * rad(k).
3

%I #18 Dec 09 2023 07:08:08

%S 1,5,14,22,47,83,132,148,175,275,396,468,637,833,1058,1090,1379,1487,

%T 1848,2048,2489,2973,3502,3646,3771,4447,4528,4920,5761,6661,7622,

%U 7686,8775,9931,11156,11372,12741,14185,15706,16106,17787,19551,21400,22368,23043,25159

%N a(n) = Sum_{k=1..n} k * rad(k).

%H Amiram Eldar, <a href="/A350996/b350996.txt">Table of n, a(n) for n = 1..10000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Radical_of_an_integer">Radical of an integer</a>.

%F a(n) = Sum_{k=1..n} A064549(k).

%F a(n) ~ c * n^3 / 3, where c = A065463. - _Amiram Eldar_, Dec 09 2023

%e a(4) = 22; a(4) = Sum_{k=1..4} k * rad(k) = 1*rad(1) + 2*rad(2) + 3*rad(3) + 4*rad(4) = 1*1 + 2*2 + 3*3 + 4*2 = 22.

%t f[n_] := n * Times @@ FactorInteger[n][[;; , 1]]; Accumulate @ Array[f, 50] (* _Amiram Eldar_, Jan 29 2022 *)

%o (PARI) a(n) = sum(k=1, n, k*factorback(factorint(k)[, 1])); \\ _Michel Marcus_, Jan 30 2022

%Y Cf. A007947 (rad), A073355, A064549, A065463.

%K nonn

%O 1,2

%A _Wesley Ivan Hurt_, Jan 28 2022