login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 17, a(1) = 4700, thereafter a(n) = 254*a(n-1) - a(n-2) + 378.
3

%I #18 Jan 03 2023 05:50:39

%S 17,4700,1194161,303312572,77040199505,19567907362076,

%T 4970171429768177,1262403975253755260,320645639543024068241,

%U 81442730039952859578332,20686132784508483308828465,5254196284535114807582852156,1334545170139134652642735619537,338969219019055666656447264510620

%N a(0) = 17, a(1) = 4700, thereafter a(n) = 254*a(n-1) - a(n-2) + 378.

%C Arises in studying the equation x^3 - 7*y^2 = 1.

%D P.-F. Teilhet, Query 2228, L'Intermédiaire des Mathématiciens, 11 (1904), 44-45.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (255,-255,1).

%F From _Chai Wah Wu_, Mar 07 2022: (Start)

%F a(n) = 255*a(n-1) - 255*a(n-2) + a(n-3) for n > 3.

%F G.f.: (4*x^2 - 365*x - 17)/((x - 1)*(x^2 - 254*x + 1)). (End)

%Y Cf. A350979, A350981.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_, Mar 06 2022