Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Feb 22 2022 10:18:06
%S 0,1,2,11,38,311,2254,36079,549790,17593311,549687102,35179974591,
%T 2225029922430,284803830071167,36240869367020798,9277662557957324543,
%U 2368116566113212692990,1212475681849964898811391,619877748107024946567312382,634754814061593545284927880191
%N The smallest number whose binary expansion has exactly n distinct runs.
%C Positions of first appearances in A297770 (with offset 0).
%C The binary expansion of terms for n > 0 starts with 1, then floor(n/2) 0's, then alternates runs of increasing numbers of 1's, and decreasing numbers of 0's; see Python code. Thus, for n even, terms have n*(n/2+1)/2 binary digits, and for n odd, ((n+1) + (n-1)*((n-1)/2+1))/2 binary digits. - _Michael S. Branicky_, Feb 14 2022
%H Michael S. Branicky, <a href="/A350952/b350952.txt">Table of n, a(n) for n = 0..114</a>
%H Mathematics Stack Exchange, <a href="https://math.stackexchange.com/q/87559">What is a sequence run? (answered 2011-12-01)</a>
%e The terms and their binary expansions begin:
%e 0: ()
%e 1: 1
%e 2: 10
%e 11: 1011
%e 38: 100110
%e 311: 100110111
%e 2254: 100011001110
%e 36079: 1000110011101111
%e 549790: 10000110001110011110
%e For example, 311 has binary expansion 100110111 with 5 distinct runs: 1, 00, 11, 0, 111.
%t q=Table[Length[Union[Split[If[n==0,{},IntegerDigits[n,2]]]]],{n,0,1000}];Table[Position[q,i][[1,1]]-1,{i,Union[q]}]
%o (Python)
%o def a(n): # returns term by construction
%o if n == 0: return 0
%o q, r = divmod(n, 2)
%o if r == 0:
%o s = "".join("1"*i + "0"*(q-i+1) for i in range(1, q+1))
%o assert len(s) == n*(n//2+1)//2
%o else:
%o s = "1" + "".join("0"*(q-i+2) + "1"*i for i in range(2, q+2))
%o assert len(s) == ((n+1) + (n-1)*((n-1)//2+1))//2
%o return int(s, 2)
%o print([a(n) for n in range(20)]) # _Michael S. Branicky_, Feb 14 2022
%o (PARI) a(n)={my(t=0); for(k=1, (n+1)\2, t=((t<<k)+(2^k-1))<<(n\2+1-k)); t} \\ _Andrew Howroyd_, Feb 15 2022
%Y Runs in binary expansion are counted by A005811, distinct A297770.
%Y The version for run-lengths instead of runs is A165933, for A165413.
%Y Subset of A175413 (binary expansion has distinct runs), for lengths A044813.
%Y The version for standard compositions is A351015.
%Y A000120 counts binary weight.
%Y A011782 counts integer compositions.
%Y A242882 counts compositions with distinct multiplicities.
%Y A318928 gives runs-resistance of binary expansion.
%Y A334028 counts distinct parts in standard compositions.
%Y A351014 counts distinct runs in standard compositions.
%Y Counting words with all distinct runs:
%Y - A351013 = compositions, for run-lengths A329739, ranked by A351290.
%Y - A351016 = binary words, for run-lengths A351017.
%Y - A351018 = binary expansions, for run-lengths A032020.
%Y - A351200 = patterns, for run-lengths A351292.
%Y - A351202 = permutations of prime factors.
%Y Cf. A003242, A070939, A085207, A098859, A233564, A325545, A328592, A333489, A351203, A351291.
%K nonn
%O 0,3
%A _Gus Wiseman_, Feb 14 2022
%E a(9)-a(19) from _Michael S. Branicky_, Feb 14 2022