login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Minimal permanent of an n X n Toeplitz matrix using the integers 1 to 2*n - 1.
9

%I #31 Dec 22 2023 16:35:54

%S 1,1,7,89,2287,89025,5141775,404316249

%N Minimal permanent of an n X n Toeplitz matrix using the integers 1 to 2*n - 1.

%C At least up to a(7) the minimal permanent is attained by a matrix which has 1, 3, 5, ... as first row and 1, 2, 4, 6,... as first column. - _Giovanni Resta_, Oct 13 2022

%C Also minimal permanent of an n X n Hankel matrix using the integers 1 to 2*n - 1. - _Stefano Spezia_, Dec 22 2023

%H Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A350937%2B8.sage">A350937+8.sage</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a>

%e a(2) = 7:

%e 1 2

%e 3 1

%e a(3) = 89:

%e 1 2 4

%e 3 1 2

%e 5 3 1

%o (Python)

%o from itertools import permutations

%o from sympy import Matrix

%o def A350937(n): return 1 if n == 0 else min(Matrix([p[n-1-i:2*n-1-i] for i in range(n)]).per() for p in permutations(range(1,2*n))) # _Chai Wah Wu_, Jan 27 2022

%Y Cf. A322908, A323254, A350930, A350938 (maximal).

%K nonn,hard,more

%O 0,3

%A _Stefano Spezia_, Jan 26 2022

%E a(5) from _Alois P. Heinz_, Jan 26 2022

%E a(6) from _Lucas A. Brown_, Sep 04 2022

%E a(7) from _Giovanni Resta_, Oct 13 2022