Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Feb 20 2022 22:44:27
%S 34,9,7,964324,19,3822025,41,15129,341,427166224,199,700569,1241,
%T 11923111249,919,12376324,6641,34539129,12221,363016809,3401,56776225,
%U 5741,199809,52865,48045571249,47081,3764067904,21113,19035769,18089,145371249,59291,2219069449
%N a(n) is the smallest number m such that tau(m - 1) = tau(m + 1) = tau(m) + n or 0 if no such m exists, where tau(k) = A000005(k).
%C Corresponding values of tau(a(n)): 4, 3, 2, 9, 2, 27, 2, 9, 4, 15, 2, 21, 4, 27, 2, 9, 4, 15, 6, 45, 4, 27, 2, 9, 8, 15, 6, 21, 4, 3, 2, 9, 4, 15, ...
%C Triples of [tau(a(n) - 1), tau(a(n)), tau(a(n) + 1)] = [tau(a(n)) + n, tau(a(n)), tau(a(n)) + n]: [4, 4, 4], [4, 3, 4], [4, 2, 4], [12, 9, 12], [6, 2, 6], [32, 27, 32], [8, 2, 8], [16, 9, 16], [12, 4, 12], ...
%C If n is odd then a(n) is a square. - _Amiram Eldar_, Jan 26 2022
%e a(3) = 964324 because 964324 is the smallest number m such that tau(m-1) = tau(m+1) = tau(m)+3; tau(964323) = tau(964325) = tau(964324)+3 = 9+3 = 12.
%t seq[m_, nmax_] := Module[{s = Table[0, {m + 1}], c = 0, d1 = 1, d2 = 2, n = 3, d, k}, While[c < m + 1 && n < nmax, d = DivisorSigma[0, n]; If[d1 == d, k = d - d2 + 1; If[k >= 1 && k <= m + 1 && s[[k]] == 0, s[[k]] = n - 1; c++]]; n++; d1 = d2; d2 = d]; TakeWhile[s, # > 0 &]]; seq[8, 10^7] (* _Amiram Eldar_, Jan 26 2022 *)
%o (Magma) Ax:=func<n|exists(r){m: m in[2..10^6] | #Divisors(m - 1) eq #Divisors(m + 1) and #Divisors(m - 1) eq #Divisors(m) + n} select r else 0>; [Ax(n): n in [0..8]]
%Y Cf. A000005, A190646, A350132, A350935, A350936.
%K nonn
%O 0,1
%A _Jaroslav Krizek_, Jan 25 2022
%E More terms from _Amiram Eldar_, Jan 26 2022