Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jan 24 2022 09:13:45
%S 0,0,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,4,4,5,5,
%T 6,6,7,7,8,8,9,9,10,10,11,11,12,13,14,15,17,18,20,22,24,26,29,31,34,
%U 37,40,43,47,50,54,58,62,66,71,75,80,85,90,95,102,107,114,121,129,136,146,154,165,175,187,198,213
%N Number of partitions of n such that (smallest part) = 3*(number of parts).
%H Vaclav Kotesovec, <a href="/A350894/b350894.txt">Table of n, a(n) for n = 1..10000</a>
%F G.f.: Sum_{k>=1} x^(3*k^2)/Product_{j=1..k-1} (1-x^j).
%F a(n) ~ (1 - alfa) * exp(2*sqrt(n*(3*log(alfa)^2 + polylog(2, 1 - alfa)))) * (3*log(alfa)^2 + polylog(2, 1 - alfa))^(1/4) / (2*sqrt(Pi) * sqrt(6 - 5*alfa) * n^(3/4)), where alfa = 0.7780895986786010978806823096592944458720784440255... is positive real root of the equation alfa^6 + alfa - 1 = 0. - _Vaclav Kotesovec_, Jan 22 2022
%o (PARI) my(N=99, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, sqrtint(N\3), x^(3*k^2)/prod(j=1, k-1, 1-x^j))))
%Y Column 3 of A350890.
%Y Cf. A168656, A237756.
%K nonn
%O 1,27
%A _Seiichi Manyama_, Jan 21 2022