login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of digraphs on n labeled nodes with k arcs and a global source and sink, n >= 1, k = 0..max(1,n-1)*(n-2)+1.
5

%I #12 Jan 22 2022 23:42:58

%S 1,0,2,0,0,6,6,0,0,0,24,132,180,84,12,0,0,0,0,120,1800,8000,16160,

%T 18180,12580,5560,1560,260,20,0,0,0,0,0,720,22320,214800,999450,

%U 2764650,5125380,6844380,6882150,5355750,3277200,1586520,605370,179250,39900,6300,630,30

%N Triangle read by rows: T(n,k) is the number of digraphs on n labeled nodes with k arcs and a global source and sink, n >= 1, k = 0..max(1,n-1)*(n-2)+1.

%H Andrew Howroyd, <a href="/A350791/b350791.txt">Table of n, a(n) for n = 1..2319</a> (rows 1..20)

%H R. W. Robinson, <a href="http://cobweb.cs.uga.edu/~rwr/publications/components.pdf">Counting digraphs with restrictions on the strong components</a>, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.

%e Triangle begins:

%e [1] 1;

%e [2] 0, 2;

%e [3] 0, 0, 6, 6;

%e [4] 0, 0, 0, 24, 132, 180, 84, 12;

%e ...

%o (PARI) \\ Following Eqn 21 in the Robinson reference.

%o Z(p,f)={my(n=serprec(p,x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}

%o G(e,p)={Z(p, k->1/e^(k*(k-1)/2))}

%o U(e,p)={Z(p, k->e^(k*(k-1)/2))}

%o DigraphEgf(n,e)={sum(k=0, n, e^(k*(k-1))*x^k/k!, O(x*x^n) )}

%o StrongD(n,e=2)={-log(U(e, 1/G(e, DigraphEgf(n, e))))}

%o InitFinallyV(n, e=2)={my(S=StrongD(n, e)); Vec(serlaplace( x - x^2 + exp(S) * U(e, G(e, x*exp(-S))^2*G(e, DigraphEgf(n,e))) ))}

%o row(n)={Vecrev(InitFinallyV(n, 1+'y)[n]) }

%o { for(n=1, 5, print(row(n))) }

%Y Row sums are A350790.

%Y The unlabeled version is A350795.

%Y Cf. A057271, A350793.

%K nonn,tabf

%O 1,3

%A _Andrew Howroyd_, Jan 16 2022