login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350766
Reversed sum of the two previous terms, with a(1) = 1 and a(2) = 11.
0
1, 11, 21, 23, 44, 76, 21, 79, 1, 8, 9, 71, 8, 97, 501, 895, 6931, 6287, 81231, 81578, 908261, 938989, 527481, 746641, 2214721, 2631692, 3146484, 6718775, 9525689, 46444261, 5996955, 61214425, 8311276, 10752596, 27836091, 78688583
OFFSET
1,2
COMMENTS
Given two initial terms, sum the terms and reverse the digits of the sum. Then repeat.
Related to A014258, the Iccanobif numbers, but with initial terms 1 and 11 rather than 0 and 1.
MATHEMATICA
Clear[ BiF ]; BiF[ 0 ]=1; BiF[ 1 ]=11; BiF[ n_Integer ] := BiF[ n ]=Plus@@(IntegerDigits[ BiF[ n-2 ]+BiF[ n-1 ], 10 ]//(#*Array[ 10^#&, Length[ # ], 0 ])&); Array[ BiF, 40, 0 ]
nxt[{a_, b_}]:={b, FromDigits[Reverse[IntegerDigits[a+b]]]}; Transpose[ NestList[ nxt, {0, 1}, 40]][[1]]
PROG
(Python)
terms = [1, 11]
for i in range(100):
terms.append(int(str(terms[-1]+terms[-2])[::-1]))
print(terms) # Gleb Ivanov, Jan 14 2022
CROSSREFS
Cf. A014258 but with initial terms 1 and 11 rather than 0 and 1.
Sequence in context: A178413 A050718 A360372 * A189226 A261409 A195100
KEYWORD
nonn,base,easy
AUTHOR
Tim Ricchuiti, Jan 14 2022
STATUS
approved