Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Oct 02 2024 01:57:28
%S 1,2,3,4,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,26,27,28,
%T 29,30,31,32,33,34,35,36,37,38,39,40,42,43,44,45,46,47,48,49,50,51,52,
%U 53,54,55,56,57,58,59,60,62,63,64,65,66,67,68,69,70,71,72,73,74,75
%N a(1)=1; for n>1, a(n) is the smallest number k > a(n-1) such that a(n-1) + k is not a square.
%C Complement of A099776.
%F For n>1, a(n) = n+m if n>m(2m+1)+1 and a(n) = n+m-1 otherwise where m = floor(sqrt(n/2)). - _Chai Wah Wu_, Oct 01 2024
%e 5 is not a term because 4 + 5 = 9 = 3^2.
%t a[1] = 1; a[n_] := a[n] = Module[{k = a[n - 1] + 1}, While[IntegerQ[Sqrt[a[n - 1] + k]], k++]; k]; Array[a, 100] (* _Amiram Eldar_, Jan 14 2022 *)
%o (PARI) lista(nn) = {my(x=1, list=List(x)); for (n=2, nn, my(k=x+1); while (issquare(x+k), k++); listput(list, k); x = k;); list;} \\ _Michel Marcus_, Jan 14 2022
%o (Python)
%o from math import isqrt
%o def A350757(n): return n+(m:=isqrt(n>>1))-int(n<=m*((m<<1)+1)+1) if n>1 else 1 # _Chai Wah Wu_, Oct 01 2024
%Y Cf. A099776.
%K nonn
%O 1,2
%A _J. Lowell_, Jan 13 2022