login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350744
Numbers m such that A061078(m)/A061077(m) = 4/5.
0
5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 51, 52, 53, 54, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 101, 102, 103, 104, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 151, 152, 153, 154, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 201, 202, 203, 204, 205, 210, 215, 220, 225
OFFSET
1,1
COMMENTS
All positive multiples of 5 are terms of the sequence.
REFERENCES
Amarnath Murthy, Smarandache friendly numbers and a few more sequences, Smarandache Notions Journal, Vol. 12, No. 1-2-3, Spring 2001.
LINKS
FORMULA
Let k be a positive integer not divisible by 5 and j >= 0; then 5*k*10^j, 5*k*10^j+1, ..., 5*k*10^j+(5/9)*(10^j-1) are all terms of the sequence.
Limit_{n->oo} A061078(n)/A061077(n) = 4/5.
EXAMPLE
30 is a term, in fact A061078(30)=320, A061077(30)=400 and a(n) = 320/400 = is 4/5.
500, 501, 502, ..., 554, 555 are all terms. In fact 500=5*10^2 and for the formula above also 501, ..., 500+(5/9)*(10^2-1) = 555 are all terms of the sequence.
MATHEMATICA
Flatten[Position[(Accumulate[Times @@@ IntegerDigits[Range[2, 10000, 2]]]/
Accumulate[Times @@@ IntegerDigits[Range[1, 9999, 2]]]), 4/5]]
PROG
(PARI) pd(n) = my(d = digits(n)); prod(i=1, #d, d[i]);
isok(k) = sum(i=1, k, pd(2*i))/sum(i=1, k, pd(2*i-1)) == 4/5; \\ Michel Marcus, Mar 21 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Luca Onnis, Mar 20 2022
STATUS
approved