Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jan 18 2022 19:53:29
%S 1,2,1,2,4,4,4,8,4,10,5,9,13,10,1,11,17,8,16,16,20,22,16,22,22,26,20,
%T 26,18,30,4,21,32,33,31,36,17,24,29,38,31,40,40,17,25,42,47,48,41,49,
%U 49,38,33,45,47,44,56,57,59,57,41,60,16,33,64,64,42,60,67
%N a(n) is the maximal digit, expressed in base 10, in the base-n representation of 2^n.
%H Alois P. Heinz, <a href="/A350659/b350659.txt">Table of n, a(n) for n = 2..10000</a>
%p a:= n-> max(convert(2^n, base, n)):
%p seq(a(n), n=2..70); # _Alois P. Heinz_, Jan 10 2022
%t a[n_] := Max[IntegerDigits[2^n, n]]; Array[a, 100, 2] (* _Amiram Eldar_, Jan 10 2022 *)
%o (PARI) for(n=2,72,print1(vecmax(digits(2^n,n)),", "))
%o (Python)
%o from sympy.ntheory.digits import digits
%o def a(n): return max(digits(2**n, n)[1:])
%o print([a(n) for n in range(2, 71)]) # _Michael S. Branicky_, Jan 10 2022
%Y Cf. A350658.
%K nonn,base
%O 2,2
%A _Hugo Pfoertner_, Jan 10 2022