%I #18 Jan 24 2022 16:04:51
%S 2,6,6,12,10,24,14,24,18,30,22,60,26,42,30,48,34,72,38,60,42,66,46,
%T 120,50,78,54,84,58,120,62,96,66,102,70,180,74,114,78,120,82,168,86,
%U 132,90,138,94,240,98,150,102,156,106,216,110,168,114,174,118,360,122,186,126
%N a(n) is the smallest multiple of n that has at least twice as many divisors as n.
%C a(n) = min(A129902(n), A195199(n)).
%C Mostly agrees with A129902, but occasionally with A195199.
%C 698377680 is a value of n where a(n) is equal to A195199(n).
%C a(n) <= A053669(n)*n. - _David A. Corneth_, Jan 08 2022
%H Robert Israel, <a href="/A350631/b350631.txt">Table of n, a(n) for n = 1..10000</a>
%p f:= proc(n) local t,k;
%p t:= 2*numtheory:-tau(n);
%p for k from 2*n by n do
%p if numtheory:-tau(k) >= t then return k fi
%p od
%p end proc:
%p map(f, [$1..100]); # _Robert Israel_, Jan 20 2022
%t a[n_] := Module[{d = 2 * DivisorSigma[0, n], k = 2*n}, While[DivisorSigma[0, k] < d, k += n]; k]; Array[a, 100] (* _Amiram Eldar_, Jan 08 2022 *)
%o (PARI) a(n) = my(m=n, d=numdiv(n)); while(numdiv(m)<2*d, m+=n); m; \\ _Michel Marcus_, Jan 08 2022
%Y Cf. A000005, A129902, A195199.
%K nonn
%O 1,1
%A _J. Lowell_, Jan 08 2022