login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A350577
Prime numbers in A036991.
2
3, 5, 7, 11, 13, 19, 23, 29, 31, 43, 47, 53, 59, 61, 71, 79, 83, 103, 107, 109, 127, 151, 157, 167, 173, 179, 181, 191, 199, 211, 223, 239, 251, 271, 283, 307, 311, 317, 331, 347, 349, 359, 367, 373, 379, 383, 431, 439, 443, 461, 463, 467, 479, 487, 491, 499
OFFSET
1,1
COMMENTS
This sequence includes A000668.
Conjecture: The sequence is infinite. For example, in the first million primes (see A000040) 304208 numbers are terms of A036991.
LINKS
FORMULA
Intersection of A000040 and A036991.
MAPLE
q:= proc(n) local l, t, i; l:= Bits[Split](n); t:=0;
for i to nops(l) do t:= t-1+2*l[i];
if t<0 then return false fi
od: true
end:
select(isprime and q, [$2..500])[]; # Alois P. Heinz, Jan 07 2022
MATHEMATICA
q[n_] := PrimeQ[n] && AllTrue[Accumulate[(-1)^Reverse[IntegerDigits[n, 2]]], # <= 0 &]; Select[Range[500], q] (* Amiram Eldar, Jan 07 2022 *)
PROG
(Python)
from sympy import isprime
def ok(n):
if n == 0: return True
count = {"0": 0, "1": 0}
for bit in bin(n)[:1:-1]:
count[bit] += 1
if count["0"] > count["1"]: return False
return isprime(n)
print([k for k in range(3, 500, 2) if ok(k)]) # Michael S. Branicky, Jan 07 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Gennady Eremin, Jan 07 2022
STATUS
approved