Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Feb 11 2022 17:06:36
%S 1,1,1,2,1,2,2,1,3,1,2,1,1,3,1,1,3,3,1,3,3,3,1,4,1,2,1,1,3,3,1,3,3,3,
%T 1,4,4,1,3,3,1,3,3,3,1,4,4,1,3,3,3,1,4,1,1,1,4,4,1,3,1,1,3,3,3,1,1,5,
%U 1,2,2,1,3,3,1,3,3,3,1,4,1,1,3,3,3,1,4
%N Denominators of the fractional, multiplicative Van Eck Sequence f(n): for n >= 2, if there exists an m < n such that f(m) = f(n), take the largest such m. If f(n)=1, set f(n+1) = 1/(n-m); otherwise, if f(n) != 1, set f(n+1) = f(n)+f(m)*(n-m). If no m exists such that f(m) = f(n), then set f(n+1)=1. Start with f(1)=1 and f(2)=0. a(n) = denominator(f(n)).
%e f(n) = [ 1, 0, 1, 1/2, 1, 1/2, 3/2, 1, ... ]
%t f[1]=1; f[n_]:=0; f2[n_]:=0; a[n_]:=Block[{q=f2[x]}, If[q!=0, If[x==1,s[n]=1/(n-1-q),s[n]=((n-1-q)*(x))+x], s[n]=1]]; s[1]=1; s[2]=0; x=0; Do[x=a[n]; f2[x]=f[x]; f[x]=n, {n, 3, 100000}]; data=Denominator/@Table[s[n], {n, 1, 100000}];
%o (Python)
%o from fractions import Fraction
%o from itertools import count, islice
%o def rfind(lst, item): # find item in list before last index
%o idx = len(lst) - 2
%o while lst[idx] != None and lst[idx] != item: idx -= 1
%o return idx
%o def agen(): # generator of terms
%o f = [None, Fraction(1, 1), Fraction(0, 1)]
%o yield from [1, 1]
%o for n in count(2):
%o m = rfind(f, f[n])
%o if m > 0: fp = Fraction(1, n-m) if f[n] == 1 else f[n] + f[m]*(n-m)
%o else: fp = Fraction(1, 1)
%o f.append(fp)
%o yield fp.denominator
%o print(list(islice(agen(), 87))) # _Michael S. Branicky_, Jan 16 2022
%o (PARI) findm(list, n) = {forstep (m=n-1, 1, -1, if (list[m] == list[n], return(m))); return(0);}
%o listf(nn) = {my(list = List([1, 0])); for (n=3, nn, my(m = findm(list, n-1)); if (m, if (list[m] == 1, listput(list, 1/(n-1-m)), listput(list, list[n-1]*(n-m))), listput(list, 1););); Vec(list);}
%o listden(nn) = apply(denominator, listf(nn)); \\ _Michel Marcus_, Jan 17 2022
%Y Cf. A350228, A350559 (numerators).
%K nonn,frac
%O 1,4
%A _Jasmine Miller_, Jan 05 2022