login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Maximal coefficient of (1 + x^2) * (1 + x^3) * (1 + x^5) * ... * (1 + x^prime(n)).
8

%I #22 Feb 26 2022 04:56:56

%S 1,1,1,2,2,2,4,4,7,10,16,27,45,79,139,249,439,784,1419,2574,4703,8682,

%T 16021,29720,55146,102170,190274,356804,671224,1269022,2404289,

%U 4521836,8535117,16134474,30635869,58062404,110496946,210500898,401422210,767158570,1467402238

%N Maximal coefficient of (1 + x^2) * (1 + x^3) * (1 + x^5) * ... * (1 + x^prime(n)).

%H Alois P. Heinz, <a href="/A350457/b350457.txt">Table of n, a(n) for n = 0..700</a>

%p b:= proc(n) option remember; `if`(n=0, 1,

%p expand((1+x^ithprime(n))*b(n-1)))

%p end:

%p a:= n-> max(coeffs(b(n))):

%p seq(a(n), n=0..40); # _Alois P. Heinz_, Jan 01 2022

%t b[n_] := b[n] = If[n == 0, 1, Expand[(1 + x^Prime[n])*b[n - 1]]];

%t a[n_] := Max[CoefficientList[b[n], x]];

%t Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Feb 26 2022, after _Alois P. Heinz_ *)

%o (PARI) a(n) = vecmax(Vec(prod(k=1, n, 1 + x^prime(k)))); \\ _Michel Marcus_, Jan 01 2022

%o (Python)

%o from sympy.abc import x

%o from sympy import prime, prod

%o def A350457(n): return 1 if n == 0 else max(prod(1+x**prime(i) for i in range(1,n+1)).as_poly().coeffs()) # _Chai Wah Wu_, Jan 03 2022

%Y Cf. A000040, A000586, A007504, A025591, A160235.

%K nonn

%O 0,4

%A _Ilya Gutkovskiy_, Jan 01 2022