login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 + 2*x)) / (1 + 2*x).
4

%I #20 Feb 08 2022 05:18:28

%S 1,1,1,-1,1,-3,17,-85,385,-1767,8929,-50633,312705,-2036267,13794417,

%T -97295069,717808897,-5549714767,44868094145,-377741383697,

%U 3298933836033,-29813463964115,278462029910993,-2685972391332837,26733375327601281,-274247228584531767

%N G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 + 2*x)) / (1 + 2*x).

%C Shifts 2 places left under 2nd-order inverse binomial transform.

%F a(0) = a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * (-2)^k * a(n-k-2).

%t nmax = 25; A[_] = 0; Do[A[x_] = 1 + x + x^2 A[x/(1 + 2 x)]/(1 + 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

%t a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] (-2)^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 25}]

%Y Cf. A007472, A009235, A010739, A051139, A351184, A351185, A351186, A351187.

%K sign

%O 0,6

%A _Ilya Gutkovskiy_, Feb 04 2022