login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers m such that 8^m reversed is prime.
5

%I #19 Jan 31 2022 06:48:34

%S 8,15,50,552,668,1011,1163,1215,2199,4230,7231,34310

%N Numbers m such that 8^m reversed is prime.

%C From _Bernard Schott_, Jan 30 2022: (Start)

%C If k is a term, then u = 3*k is a term of A057708, because 8^k = 2^(3k).

%C If k is an even term, then t = 3*k/2 is a term of A350441, because 8^k = 4^(3k/2). First examples: k = 8, 50, 552, 668, 4230, 34310, ... and corresponding t = 12, 75, 828, 1002, 6345, 51465, ... (End)

%t Select[Range[2200], PrimeQ[IntegerReverse[8^#]] &] (* _Amiram Eldar_, Dec 31 2021 *)

%o (PARI) isok(m) = isprime(fromdigits(Vecrev(digits(8^m))))

%o (Python)

%o from sympy import isprime

%o m = 8

%o for n in range (1, 2000):

%o if isprime(int(str(m)[::-1])):

%o print(n)

%o m *= 8

%Y Cf. A059003, A071586.

%Y Cf. Numbers m such that k^m reversed is prime: A057708 (k=2), A350441 (k=4), A058993 (k=5), A058994 (k=7), A058995 (k=13).

%K nonn,base,more

%O 1,1

%A _Mohammed Yaseen_, Dec 31 2021

%E a(10)-a(12) from _Amiram Eldar_, Dec 31 2021