Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #18 Feb 18 2022 21:02:10
%S 0,1,2,3,3,4,5,6,4,5,6,7,7,8,9,10,6,7,8,9,9,10,11,12,10,11,12,13,13,
%T 14,15,16,9,10,11,12,12,13,14,15,13,14,15,16,16,17,18,19,15,16,17,18,
%U 18,19,20,21,19,20,21,22,22,23,24,25,13,14,15,16,16,17
%N Replace 2^k in the binary expansion of n with A000930(k+2), Narayana's cows sequence.
%C A048715(n) = m, if and only if a(n) = m and for all k > n a(k) > m.
%p b:= (n, i, j, k)->`if`(n=0, 0, k*irem(n, 2, 'q')+b(q, j, k, i+k)):
%p a:= n-> b(n, 1$3):
%p seq(a(n), n=0..100); # _Alois P. Heinz_, Jan 26 2022
%o (Python)
%o def Interpretation(n):
%o f0, f1, f2, r = 1, 1, 1, 0
%o while n > 0:
%o if n%2 == 1:
%o r = r+f0
%o n, f0, f1, f2 = n//2, f0+f2, f0, f1
%o return r
%o n = 0
%o while n <= 69:
%o print(Interpretation(n), end = ", ")
%o n += 1
%o (PARI) my(p=Mod('x,'x^3-'x^2-1)); a(n) = vecsum(Vec(lift(subst(Pol(binary(n))*'x^2,'x,p)))); \\ _Kevin Ryde_, Dec 26 2021
%Y Cf. A000930, A048715, A350215, A350312.
%Y Cf. A022290 (analog for Fibonacci numbers).
%K nonn,base
%O 0,3
%A _A.H.M. Smeets_, Dec 24 2021