%I #10 Dec 25 2021 14:54:23
%S 1,2,1,6,3,1,12,8,4,1,24,20,10,5,1
%N Triangle read by rows: the n-th row gives the saturated vertex Turán numbers for the cube graph Q_n.
%C The k-th saturated vertex Turán number for the cube graph Q_n is the maximum number of vertices to be deleted from the cube graph such that no subgraph Q_k is complete and each of the deleted vertices being added again completes a subgraph Q_k (see Harborth and Nienborg).
%H Heiko Harborth and Hauke Nienborg, <a href="https://www.researchgate.net/publication/266861957_Saturated_vertex_Turan_numbers_for_cube_graphs">Saturated vertex Turán numbers for cube graphs</a>, Congr. Num. 208 (2011), 183-188.
%H Mathonline, <a href="http://mathonline.wikidot.com/cube-graphs">Cube Graphs</a>
%F T(n, n) = 1 and T(n, n-1) = n (see Theorem 2 in Harborth and Nienborg).
%e n\k | 1 2 3 4 5
%e ----+------------------------
%e 1 | 1
%e 2 | 2 1
%e 3 | 6 3 1
%e 4 | 12 8 4 1
%e 5 | 24 20 10 5 1
%e ...
%Y Cf. A350293 (k = 1), A350295 (2nd subdiagonal).
%K nonn,tabl,more
%O 1,2
%A _Stefano Spezia_, Dec 23 2021