Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #13 Jan 09 2022 22:23:54
%S 1,0,1,0,2,2,0,3,9,6,0,4,24,48,24,0,5,50,200,300,120,0,6,90,600,1800,
%T 2160,720,0,7,147,1470,7350,17640,17640,5040,0,8,224,3136,23520,94080,
%U 188160,161280,40320,0,9,324,6048,63504,381024,1270080,2177280,1632960,362880
%N Triangle read by rows. T(n, k) = binomial(n, k) * n! / (n - k + 1)! if k >= 1, if k = 0 then T(n, k) = k^n. T(n, k) for 0 <= k <= n.
%F T(n, k) = binomial(n, k)^2 * k! / (n - k + 1) if k >= 1.
%e Table starts:
%e [0] 1;
%e [1] 0, 1;
%e [2] 0, 2, 2;
%e [3] 0, 3, 9, 6;
%e [4] 0, 4, 24, 48, 24;
%e [5] 0, 5, 50, 200, 300, 120;
%e [6] 0, 6, 90, 600, 1800, 2160, 720;
%e [7] 0, 7, 147, 1470, 7350, 17640, 17640, 5040;
%e [8] 0, 8, 224, 3136, 23520, 94080, 188160, 161280, 40320;
%e [9] 0, 9, 324, 6048, 63504, 381024, 1270080, 2177280, 1632960, 362880;
%p T := (n, k) -> ifelse(k = 0, k^n, binomial(n, k)^2 * k! / (n - k + 1)):
%p seq(seq(T(n, k), k = 0..n), n = 0..9);
%t T[n_, 0] := Boole[n == 0]; T[n_, k_] := Binomial[n, k]^2 * k!/(n - k + 1); Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Amiram Eldar_, Jan 09 2022 *)
%Y A350267 (row sums), A000142 (main diagonal), A074143 (subdiagonal), A006002 (column 2), A089835 (central terms).
%K nonn,tabl
%O 0,5
%A _Peter Luschny_, Jan 09 2022