%I #8 Dec 30 2021 07:23:14
%S 1,-1,-1,-2,-1,0,-5,-1,1,1,21,25,19,9,1,1103,674,343,128,23,-2,29835,
%T 15211,6551,2133,379,-25,-9,739751,331827,123821,33479,3603,-1549,
%U -583,-9,16084810,5987745,1619108,120865,-174114,-112975,-32600,-3087,50
%N Triangle read by rows. T(n, k) = B(n, n - k + 1) where B(n, k) = k^n * BellPolynomial(n, -1/k) for k > 0, if k = 0 then B(n, k) = k^n.
%e [0] 1
%e [1] -1, -1
%e [2] -2, -1, 0
%e [3] -5, -1, 1, 1
%e [4] 21, 25, 19, 9, 1
%e [5] 1103, 674, 343, 128, 23, -2
%e [6] 29835, 15211, 6551, 2133, 379, -25, -9
%e [7] 739751, 331827, 123821, 33479, 3603, -1549, -583, -9
%e [8] 16084810, 5987745, 1619108, 120865, -174114, -112975, -32600, -3087, 50
%p B := (n, k) -> ifelse(k = 0, k^n, k^n * BellB(n, -1/k)):
%p A350262 := (n, k) -> B(n, n - k + 1):
%p seq(seq(A350262(n, k), k = 0..n), n = 0..8);
%t B[n_, k_] := If[k == 0, k^n, k^n BellB[n, -1/k]]; T[n_, k_] := B[n, n - k + 1];
%t Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
%Y Cf. A350256, A350257, A350258, A350259, A350260, A350261, A350263.
%Y Cf. A000587, A009235.
%K sign,tabl
%O 0,4
%A _Peter Luschny_, Dec 22 2021