%I #8 Dec 30 2021 07:23:20
%S 1,0,1,0,2,3,0,5,11,19,0,15,49,109,201,0,52,257,742,1657,3176,0,203,
%T 1539,5815,15821,35451,69823,0,877,10299,51193,170389,447981,1007407,
%U 2026249,0,4140,75905,498118,2032785,6282416,16157905,36458010,74565473
%N Triangle read by rows. T(n, k) = k^n * BellPolynomial(n, 1/k) for k > 0, if k = 0 then T(n, k) = k^n.
%e Triangle starts:
%e [0] 1
%e [1] 0, 1
%e [2] 0, 2, 3
%e [3] 0, 5, 11, 19
%e [4] 0, 15, 49, 109, 201
%e [5] 0, 52, 257, 742, 1657, 3176
%e [6] 0, 203, 1539, 5815, 15821, 35451, 69823
%e [7] 0, 877, 10299, 51193, 170389, 447981, 1007407, 2026249
%e [8] 0, 4140, 75905, 498118, 2032785, 6282416, 16157905, 36458010, 74565473
%p A350260 := (n, k) -> ifelse(k = 0, k^n, k^n * BellB(n, 1/k)):
%p seq(seq(A350260(n, k), k = 0..n), n = 0..8);
%t T[n_, k_] := If[k == 0, k^n, k^n BellB[n, 1/k]];
%t Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
%Y Cf. A350256, A350257, A350258, A350259, A350261, A350262, A350263.
%Y Cf. A000110, A301419.
%K nonn,tabl
%O 0,5
%A _Peter Luschny_, Dec 22 2021