Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jan 14 2022 11:24:24
%S 11,3,18,15,42,189,306,369,6,1176,93,963,2202,750,408,498,267,1875,
%T 240,2751,798,1929,3402,6162,6195,4953,5004,8130,18591,20019,4461,
%U 1851,46866,29232,7206,24807,4644,23307,48528,21594,28236,4353,28212,3003,22611,50760
%N a(n) is the minimum positive integer k such that the concatenation of k, a(n-1), a(n-2), ..., a(2), and a(1) is the lesser of a pair of twin primes (i.e., a term of A001359), with a(1) = 11.
%C First observed by J. A. Hervás Contreras (see the links).
%C Every term (from the second on) is a multiple of 3.
%H Chai Wah Wu, <a href="/A350246/b350246.txt">Table of n, a(n) for n = 1..100</a>
%H José Antonio Hervás Contreras, <a href="https://www.gaussianos.com/forogauss/topic/nueva-propiedad-de-los-primos-gemelos/">¿Nueva propiedad de los primos gemelos?</a>
%e 11, 311, 18311, 1518311, and 421518311 are terms of A001359.
%p terms := proc(n)
%p local i, j, p, q, L, M:
%p i, L, M := 0, [11], [11]:
%p while numelems(L) < n do
%p i, j := i+1, 0:
%p while 1 > 0 do
%p j, p := j+1, M[numelems(M)]:
%p q := parse(cat(j, p)):
%p if isprime(q) and isprime(q+2) then
%p L, M := [op(L), j], [op(M), q]:
%p break: fi: od: od:
%p L: end:
%o (Python)
%o from itertools import count, islice
%o from sympy import isprime
%o def A350246_gen(): # generator of terms
%o yield 11
%o s = '11'
%o while True:
%o for k in count(3,3):
%o t = str(k)
%o m = int(t+s)
%o if isprime(m) and isprime(m+2):
%o yield k
%o break
%o s = t+s
%o A350246_list = list(islice(A350246_gen(),20)) # _Chai Wah Wu_, Jan 12 2022
%Y Cf. A001359.
%K nonn,base
%O 1,1
%A _Lorenzo Sauras Altuzarra_, Dec 21 2021