Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Sep 08 2024 19:55:35
%S 34,7,41,919,18089,446081,27033161,663929729,74335064959,6132592231039
%N a(n) is the smallest number m such that tau(m-1) = tau(m+1) = tau(m)^n, where tau(m) is the number of divisors of m (A000005).
%C Triples of [tau(a(n) - 1), tau(a(n)), tau(a(n) + 1)] = [tau(a(n))^n, tau(a(n)), tau(a(n))^n]: [4, 4, 4], [4, 2, 4], [8, 2, 8], [16, 2, 16], [32, 2, 32], [64, 2, 64], [128, 2, 128], ...
%C Conjecture: a(n) is prime for all n >= 2, i.e., the sequence {a(n)} without the first term is the sequence of smallest primes p such that tau(p-1) = tau(p+1) = 2^n for n >= 2.
%C a(10) <= 6132592231039. - _Jon E. Schoenfield_, Jan 19 2022
%C From _David A. Corneth_, Jan 21 2022: (Start)
%C a(11) <= 864808145605249.
%C a(12) <= 246846832951283839.
%C a(13) <= 14552217960448488319. (End)
%e 34 is the 1st term of A169834, so a(1) = 34.
%o (Magma) Ax:=func<n|exists(r){m: m in[2..10^6] | #Divisors(m - 1) eq #Divisors(m) ^ n and #Divisors(m + 1) eq #Divisors(m) ^ n} select r else 0>; [Ax(n): n in [1..6]];
%o (PARI) isok(m, n) = my(nd1=numdiv(m-1)); (nd1 == numdiv(m)^n) && (nd1 == numdiv(m+1));
%o a(n) = {my(m=2); while (!isok(m, n), m++); m;} \\ _Michel Marcus_, Dec 16 2021
%Y Cf. A000005, A169834, A343020, A343087.
%K nonn,more
%O 1,1
%A _Jaroslav Krizek_, Dec 15 2021
%E a(8) from _Jon E. Schoenfield_ and _David A. Corneth_, Dec 15 2021
%E a(9) from _David A. Corneth_ and _Martin Ehrenstein_, Jan 14 2022
%E a(10) verified by _Martin Ehrenstein_, Jan 21 2022