login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A000032(n)^A000032(n+1) mod A000032(n+2).
1

%I #29 Dec 28 2021 13:46:01

%S 2,1,4,5,13,4,16,33,64,137,123,5,733,1241,786,235,4331,721,13156,

%T 18253,32935,37347,24281,34270,127055,370341,630347,52210,76027,

%U 255327,2279978,1527009,10107310,13246385,17943817,1128698,75596554,135885089,46740145,143055674,76508345,850178467,978803396

%N a(n) = A000032(n)^A000032(n+1) mod A000032(n+2).

%H Robert Israel, <a href="/A350087/b350087.txt">Table of n, a(n) for n = 0..4762</a>

%e a(3) = 4^7 mod 11 = 5.

%p luc:= n -> combinat:-fibonacci(n-1)+combinat:-fibonacci(n+1):

%p f:= n -> luc(n) &^ luc(n+1) mod luc(n+2):

%p map(f, [$0..50]);

%t Table[PowerMod @@ LucasL[n + {0, 1, 2}], {n, 0, 50}] (* _Amiram Eldar_, Dec 23 2021 *)

%o (Python)

%o from gmpy2 import lucas2

%o def A350087(n):

%o a, b = lucas2(n+1)

%o return pow(b,a,a+b) # _Chai Wah Wu_, Dec 28 2021

%Y Cf. A000032, A350253.

%K nonn

%O 0,1

%A _J. M. Bergot_ and _Robert Israel_, Dec 22 2021