login
a(n) = A000032(n)^A000032(n+1) mod A000032(n+2).
1

%I #29 Dec 28 2021 13:46:01

%S 2,1,4,5,13,4,16,33,64,137,123,5,733,1241,786,235,4331,721,13156,

%T 18253,32935,37347,24281,34270,127055,370341,630347,52210,76027,

%U 255327,2279978,1527009,10107310,13246385,17943817,1128698,75596554,135885089,46740145,143055674,76508345,850178467,978803396

%N a(n) = A000032(n)^A000032(n+1) mod A000032(n+2).

%H Robert Israel, <a href="/A350087/b350087.txt">Table of n, a(n) for n = 0..4762</a>

%e a(3) = 4^7 mod 11 = 5.

%p luc:= n -> combinat:-fibonacci(n-1)+combinat:-fibonacci(n+1):

%p f:= n -> luc(n) &^ luc(n+1) mod luc(n+2):

%p map(f, [$0..50]);

%t Table[PowerMod @@ LucasL[n + {0, 1, 2}], {n, 0, 50}] (* _Amiram Eldar_, Dec 23 2021 *)

%o (Python)

%o from gmpy2 import lucas2

%o def A350087(n):

%o a, b = lucas2(n+1)

%o return pow(b,a,a+b) # _Chai Wah Wu_, Dec 28 2021

%Y Cf. A000032, A350253.

%K nonn

%O 0,1

%A _J. M. Bergot_ and _Robert Israel_, Dec 22 2021