%I #11 Dec 20 2021 18:39:57
%S 3,2,4,7,4,6,4,6,9,1,8,1,8,9,3,7,6,9,8,8,9,7,0,9,1,6,1,9,8,9,5,7,9,9,
%T 5,1,2,7,9,2,1,7,4,7,5,8,1,6,5,6,0,8,7,4,9,6,5,4,8,8,9,9,7,2,5,5,7,2,
%U 0,9,4,4,0,3,1,3,3,5,8,8,7,3,8,6,5,0,3,8,1,0,4,1,7,7,6,9,6,3,8,9,9,4,5,0,6,7,0,3,9,9,3,3,2,1,7,2,2,6,1,7,4,6,5,4,1,4,4,7
%N Decimal expansion of infinite sum: 1/(2^(-1)) + 1/(2^(3^(-1))) + 1/(2^(3^(4^(-1)))) + 1/(2^(3^(4^(5^(-1))))) + ...
%e 3.24746469181893769889709161989...
%e From _Jon E. Schoenfield_, Dec 12 2021: (Start)
%e The partial sum through the 1/(2^(3^(4^(5^(-1))))) term agrees with the infinite sum to more than 250 decimal digits.
%e .
%e k Sum_{j=2..k} 1/2^(...^(k^(-1))...) last term added
%e - ---------------------------------- ----------------------------------
%e 2 2.0 2.0
%e 3 2.79370052598409973737585281963... 0.79370052598409973737585281963...
%e 4 3.19532691964931766504830314874... 0.40162639366521792767245032910...
%e 5 3.24746469181893769889709161989... 0.05213777216962003384878847115...
%e 6 3.24746469181893769889709161989... 3.361969601729727422691...*10^-253
%e 7 3.24746469181893769889709161989... 1/10^(10^31089.314380144389689...)
%e (End)
%K nonn,cons
%O 1,1
%A _Lukáš Backa_, Dec 12 2021