login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j) and A350063(i) = A350063(j), for all i, j >= 1.
2

%I #12 Jan 29 2022 22:32:05

%S 1,2,2,3,2,4,2,5,3,6,2,7,2,4,4,8,2,7,2,7,6,9,2,10,3,9,5,11,2,12,2,13,

%T 4,9,4,14,2,4,9,15,2,16,2,7,7,17,2,18,3,19,9,7,2,10,6,10,9,20,2,21,2,

%U 9,7,22,4,12,2,11,4,16,2,23,2,9,7,11,4,12,2,18,8,9,2,24,9,25,17,26,2,24,6,11,20,27,9

%N Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j) and A350063(i) = A350063(j), for all i, j >= 1.

%C Restricted growth sequence transform of the ordered pair [A046523(n), A350063(n)].

%C For all i, j >= 1: A305897(i) = A305897(j) => a(i) = a(j).

%H Antti Karttunen, <a href="/A350068/b350068.txt">Table of n, a(n) for n = 1..10000</a> (based on Hans Havermann's factorization of A156552)

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%o (PARI)

%o up_to = 3003;

%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };

%o A000265(n) = (n>>valuation(n,2));

%o A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523

%o A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };

%o A350063(n) = if(1==n,0,A046523(A000265(A156552(n))));

%o Aux350068(n) = [A046523(n),A350063(n)];

%o v350068 = rgs_transform(vector(up_to, n, Aux350068(n)));

%o A350068(n) = v350068[n];

%Y Cf. A000265, A046523, A156552, A322993, A350063.

%Y Cf. A000040 (positions of 2's), A001248 (of 3's).

%Y Cf. also A101296, A300226, A305897, A350065.

%K nonn

%O 1,2

%A _Antti Karttunen_, Jan 29 2022