login
A350052
Third part of the trisection of A017077: a(n) = 17 + 24*n.
1
17, 41, 65, 89, 113, 137, 161, 185, 209, 233, 257, 281, 305, 329, 353, 377, 401, 425, 449, 473, 497, 521, 545, 569, 593, 617, 641, 665, 689, 713, 737, 761, 785, 809, 833, 857, 881, 905, 929, 953, 977, 1001, 1025, 1049, 1073
OFFSET
0,1
COMMENTS
The trisection of A017077 = {1 + 8*k}_{k>=0} gives A103214 = {1 + 24*n}_{n>=0}, 3*A017101 = {3*(3 + 8*n)}_{n >= 0} and {a(n)}_{n>=0}. These three sequences are congruent to 1 modulo 8 and to 1, 3, and 5 modulo 6, respectively.
FORMULA
a(n) = 17 + 24*n = 17 + A008606(n), for n >= 0
a(n) = 2*a(n-1) - a(n-2), for n >= 1, with a(-1) = -7, a(0) = 17.
G.f.: (17 + 7*x)/(1-x)^2.
E.g.f.: (17 + 24*x)*exp(x).
MATHEMATICA
24 * Range[0, 44] + 17 (* Amiram Eldar, Dec 18 2021 *)
PROG
(PARI) a(n) = 17 + 24*n \\ Winston de Greef, Jan 28 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Dec 11 2021
STATUS
approved