Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jan 29 2024 09:02:21
%S 19,43,67,91,115,139,163,187,211,235,259,283,307,331,355,379,403,427,
%T 451,475,499,523,547,571,595,619,643,667,691,715,739,763,787,811,835,
%U 859,883,907,931,955,979,1003,1027,1051,1075
%N Part three of the trisection of A017101: a(n) = 19 + 24*n.
%C The trisection of A017101 = {3 + 8*k}_{k>=0} gives 3*A017077 = {3*(1 + 12*n)}_{n>=0}, {A348845(n)}_{n >= 0} and {a(n)}_{n>=0}. These three sequences are congruent to 3 modulo 8 and to 3, 5, and 1 modulo 6, respectively.
%H Winston de Greef, <a href="/A350051/b350051.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F a(n) = 19 + 24*n = 19 + A008606(n), for n >= 0
%F a(n) = 2*a(n-1) - a(n-2), for n >= 1, with a(-1) = -5, a(0) = 19.
%F G.f.: (19 + 5*x)/(1-x)^2.
%F E.g.f.: (19 + 24*x)*exp(x).
%t 24 * Range[0, 44] + 19 (* _Amiram Eldar_, Dec 18 2021 *)
%o (PARI) a(n) = 19 + 24*n \\ _Winston de Greef_, Jan 28 2024
%Y Cf. A008606, 3*A017077, A017101, A348845.
%K nonn,easy
%O 0,1
%A _Wolfdieter Lang_, Dec 11 2021