login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350045
Numbers that are the perimeter of a primitive 120-degree integer triangle.
3
15, 28, 40, 66, 77, 91, 104, 126, 144, 153, 170, 187, 190, 209, 220, 228, 260, 276, 286, 299, 322, 325, 345, 350, 390, 400, 420, 435, 442, 464, 476, 493, 496, 522, 527, 544, 551, 558, 589, 608, 620, 630, 646, 665, 672, 703, 714, 740, 770, 777, 798, 805, 814, 840, 851, 861, 874, 888, 902, 920, 943, 946, 950
OFFSET
1,1
LINKS
EXAMPLE
b(n) = Sum_{k=1..3} A264827(3*n+k-3).
b(1) = 3+5+7 = 15 = a(1).
b(2) = 5+16+19 = 40 = a(3).
b(3) = 7+8+13 = 28 = a(2).
b(4) = 7+33+37 = 77 = a(5).
b(5) = 9+56+61 = 126 = a(8).
b(6) = 11+24+31 = 66 = a(4).
b(7) = 11+85+91 = 187 = a(12).
b(8) = 13+35+43 = 91 = a(6).
PROG
(Ruby)
def A(n)
ary = []
(1..n).each{|i|
(i + 1..n).each{|j|
if i.gcd(j) == 1 && (i - j) % 3 > 0
ary << 2 * j * j + 3 * i * j + i * i
end
}
}
ary
end
p A(30).uniq.sort[0..100]
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 11 2021
STATUS
approved