



2275, 11275, 16443, 34263, 42775, 42955, 47955, 49075, 49383, 53163, 55683, 58075, 61623, 69795, 70315, 70735, 71643, 76323, 77875, 83235, 88443, 90963, 100375, 102555, 103383, 107523, 108295, 110955, 112723, 113155, 113575, 120783, 124315, 127015, 128945, 136323
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Conjecturally, odd numbers k > 1 such that liminf_{n>oo} d(p(n)^(k1)1) < liminf_{n>oo} d(p(n)^k1) > liminf_{n>oo} d(p(n)^(k+1)1) < liminf_{n>oo} d(p(n)^(k+2)1) > liminf_{n>oo} d(p(n)^(k+3)1), where p(n) = prime(n), d = A000005.
Odd numbers k such that both k and k+2 are in A349937.
What's the smallest term congruent to 5 modulo 6? That is to say, what's the smallest k such that both k and k+2 are in A349941?


LINKS



PROG

(PARI) isA349938(k) = if(k%2&&k>1, my(v=vector(5, n, A309906(k2+n))); v[2]>v[1] && v[2]>v[3] && v[4]>v[3] && v[4]>v[5], 0) \\ See A309906 for its program


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



