login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Central pentanomial coefficients.
2

%I #14 Dec 09 2021 06:02:45

%S 1,5,85,1751,38165,856945,19611175,454805755,10651488789,251345549849,

%T 5966636799745,142330448514875,3408895901222375,81922110160246231,

%U 1974442362935339179,47705925773278538281,1155170746105476171285,28025439409568101909625,681077893998769910221225

%N Central pentanomial coefficients.

%C Largest coefficient of (Sum_{j=0..4} x^j)^(2*n).

%H Vaclav Kotesovec, <a href="/A349936/b349936.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = T(2*n, 4*n, 4), where T(n, k, s) is the s-binomial coefficient defined as the coefficient of x^k in (Sum_{i=0..s} x^i)^n.

%F a(n) = A035343(2*n, 4*n) = [x^(4*n)] (Sum_{j=0..4} x^j)^(2*n).

%F From _Vaclav Kotesovec_, Dec 09 2021: (Start)

%F Recurrence: 2*n*(2*n - 1)*(3*n - 4)*(4*n - 7)*(4*n - 3)*(4*n - 1)*(6*n - 13)*(6*n - 7)*a(n) = 3*(4*n - 7)*(6*n - 13)*(10584*n^6 - 47628*n^5 + 84190*n^4 - 73965*n^3 + 33531*n^2 - 7272*n + 570)*a(n-1) - 75*(n-1)*(2*n - 3)*(4*n - 5)*(6*n - 1)*(504*n^4 - 2520*n^3 + 4160*n^2 - 2525*n + 476)*a(n-2) + 625*(n-2)*(n-1)*(2*n - 5)*(2*n - 3)*(3*n - 1)*(4*n - 3)*(6*n - 7)*(6*n - 1)*a(n-3).

%F a(n) ~ 25^n / sqrt(8*Pi*n). (End)

%t T[n_,k_,s_]:=If[k==0,1,Coefficient[(Sum[x^i,{i,0,s}])^n,x^k]]; Table[T[2n,4n,4],{n,0,18}]

%Y Central coefficients in triangle A035343.

%Y Column s = 4 in A349933.

%Y Cf. A005721, A063419, A082758.

%K nonn,easy

%O 0,2

%A _Stefano Spezia_, Dec 06 2021