login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349848
a(n) = Sum_{k=1..n} prime(n)^prime(k).
0
4, 36, 3275, 840742, 285331320285, 304667330108466, 827250200736677741479, 1983900084687573008820254, 20880542756369384174903669400953, 2567686157477937962829648585022637187631942, 17086936018496343189927728440572423322828545911
OFFSET
1,1
EXAMPLE
For n=3, p=5, a(n) = 5^2 + 5^3 + 5^5 = 25 + 125 + 3125 = 3275.
PROG
(PARI) a(n) = my(p=prime(n)); sum(k=1, n, p^prime(k)); \\ Michel Marcus, Dec 02 2021
(Python)
from sympy import prime, primerange
def a(n): pn = prime(n); return sum(pn**pk for pk in primerange(1, pn+1))
print([a(n) for n in range(1, 12)]) # Michael S. Branicky, Dec 02 2021
CROSSREFS
Sequence in context: A175493 A179870 A001152 * A218515 A296136 A061024
KEYWORD
nonn
AUTHOR
Firdous Ahmad Mala, Dec 02 2021
EXTENSIONS
More terms from Michel Marcus, Dec 02 2021
STATUS
approved