login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of -(1 - 16*x)^(1/2) / (1 - 8*x)^(1/4).
2

%I #18 Dec 04 2021 06:40:47

%S -1,6,38,340,3482,38740,457500,5654440,72412410,953696900,12844323828,

%T 176130113432,2450987760676,34524885571400,491309242342264,

%U 7052495781361488,101992452504973882,1484590294804096356,21732695236734410500,319745609409940857144

%N Expansion of -(1 - 16*x)^(1/2) / (1 - 8*x)^(1/4).

%C Let b(n) = -a(n)/(-8)^n, {b(n)} = {1, 3/4, -19/32, 85/128, -1741/2048, 9685/8192, -114375/65536, ...}, then Sum_{n>=0} b(n) is clearly divergent since Sum_{n>=0} a(n)*x^n has radius of convergence 1/16. Let c(n) = -A349846(n)/(-4)^n, {c(n)} = {1, 3/2, -5/8, 7/16, -45/128, 77/256, -273/1024, ...}, then Sum_{n>=1} c(n) is the Cauchy product of Sum_{n>=0} b(n) with itself. Since |c(n)| ~ 1/sqrt(Pi*n) and |c(n+1)|/|c(n)| = ((2*n-1)*(2*n+3)) / ((2*n+1)*(2*n+2)) < 1, Sum_{n>=0} c(n) is conditionally convergent by Leibniz's criterion. {b(n)} serves as an example such that the Cauchy product of a divergent series with itself can be conditionally convergent.

%H Wikipedia, <a href="https://en.m.wikipedia.org/wiki/Cauchy_product">Cauchy product</a>

%F a(n) = (Sum_{k=0..n-1} 2^(2*k+3) * CatalanNumber(k) * A004981(n-1-k)) - A004981(n).

%e Let C(n) denote the Catalan numbers, P = A004981.

%e a(0) = -P(0) = -1;

%e a(1) = 2^3 * C(0) * P(0) - P(1) = 6;

%e a(2) = 2^3 * C(0) * P(1) + 2^5 * C(1) * P(0) - P(2) = 38;

%e a(3) = 2^3 * C(0) * P(2) + 2^5 * C(1) * P(1) + 2^7 * C(2) * P(0) - P(3) = 340;

%e a(4) = 2^3 * C(0) * P(3) + 2^5 * C(1) * P(2) + 2^7 * C(2) * P(1) + 2^9 * C(3) * P(0) - P(4) = 3482.

%o (PARI) C(n) = binomial(2*n,n)/(n+1)

%o a(n) = sum(k=0, n-1, 2^(2*k+3) * C(k) * A004981(n-1-k)) - A004981(n) \\ See A004981 for its program

%Y Cf. A000108, A004981, A349845, A349846.

%K sign

%O 0,2

%A _Jianing Song_, Dec 01 2021