login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1; a(n) = -Sum_{d|n, d < n} gpf(n/d) * a(d).
2

%I #13 Dec 06 2021 03:13:09

%S 1,-2,-3,2,-5,9,-7,-2,6,15,-11,-15,-13,21,25,2,-17,-27,-19,-25,35,33,

%T -23,21,20,39,-12,-35,-29,-105,-31,-2,55,51,63,66,-37,57,65,35,-41,

%U -147,-43,-55,-80,69,-47,-27,42,-85,85,-65,-53,72,99,49,95,87,-59,245

%N a(1) = 1; a(n) = -Sum_{d|n, d < n} gpf(n/d) * a(d).

%C Dirichlet inverse of A006530.

%H Antti Karttunen, <a href="/A349789/b349789.txt">Table of n, a(n) for n = 1..20000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GreatestPrimeFactor.html">Greatest Prime Factor</a>

%F From _Bernard Schott_, Dec 05 2021: (Start)

%F a(n) = -n iff n is prime.

%F a(2^k) = (-1)^k * 2 for k > 0. (End)

%t a[1] = 1; a[n_] := a[n] = -Sum[(FactorInteger[n/d][[-1, 1]]) a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 60}]

%o (PARI)

%o A006530(n) = if(1==n, n, my(f=factor(n)); f[#f~, 1]);

%o memoA349789 = Map();

%o A349789(n) = if(1==n,1,my(v); if(mapisdefined(memoA349789,n,&v), v, v = -sumdiv(n,d,if(d<n,A006530(n/d)*A349789(d),0)); mapput(memoA349789,n,v); (v))); \\ _Antti Karttunen_, Dec 05 2021

%Y Cf. A006530, A349790.

%K sign

%O 1,2

%A _Ilya Gutkovskiy_, Nov 30 2021