login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349748
Primes p for which 2^p-1 and 5^p-1 are not relatively prime.
1
2, 179, 239, 359, 419, 431, 499, 547, 571, 641, 659, 719, 761, 937, 1013, 1019, 1223, 1439, 1499, 1559, 1789, 2039, 2339, 2399, 2459, 2539, 2593, 2677, 2699, 2819, 2939, 3299, 3359, 3539, 3779, 4013, 4019, 4273, 4513, 4787, 4919, 5039, 5279, 5393, 5399, 5639, 6173, 6199, 6899, 7079, 8599, 8741, 8929, 9059, 9419, 9479
OFFSET
1,1
COMMENTS
Primes p for which A270390(p) = gcd(A000225(p), A024049(p)) > 1.
EXAMPLE
2 is included as 2^2 - 1 = 3 and 5^2 - 1 = 24 share a prime factor 3.
MATHEMATICA
upto=10^4; Select[Prime[Range[PrimePi[upto]]], GCD[2^#-1, 5^#-1]>1&] (* Paolo Xausa, Nov 30 2021 *)
PROG
(PARI) isA349748(n) = (isprime(n)&&(gcd(2^n-1, 5^n-1)>1));
(Python)
from math import gcd
from sympy import isprime
def ok(n): return isprime(n) and gcd(2**n-1, 5**n-1) > 1
print([k for k in range(9500) if ok(k)]) # Michael S. Branicky, Nov 30 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 30 2021
STATUS
approved